Определение

Стоп-кодон является генетический код что сигнализирует об окончании производства белка внутри клетка, как точка в конце предложения. Три стоп-кодона нуклеотид базовые триплеты, которые играют важную роль во внутриклеточном синтезе белка; физиологические и / или анатомические изменения возможны, если стоп-кодон находится в неправильном положении на цепи ДНК или РНК или если кодовая последовательность изменена.

Без стоп-кодонов организм не может производить конкретные белки. Новая полипептидная (белковая) цепь будет просто расти и расти до тех пор, пока клетка не лопнет или не исчезнет. аминокислоты добавить к этому. И стартовые, и стоп-кодоны в ДНК и РНК, как и предполагают их названия, предоставляют инструкции по запуску и остановке, которые регулируют длину полипептидной цепи. Каждая цепь является результатом отдельных аминокислот, связанных в определенном порядке, как показано ниже.

Все кодоны состоят из трех нуклеотидных оснований и названы в соответствии с порядком этих оснований – например, стоп-кодон TAG говорит нам, что он состоит из тимин затем аденин, затем гуанин. Чтобы по-настоящему понять важность стоп-кодона, полезно освежить наши знания о конструкции ДНК и синтезе белка.

Цитогенное местоположение говорит ученым, где найти различные инструкции по производству белка. Также важно помнить, что, хотя каждый клеточное ядро содержит инструкции для выработки полнофункционального организма, большинство генов экспрессируются (активируются) только в определенных тканях; KRT-9 экспрессируется в клетках кожи ладоней и подошв, а печень клеточное ядро ​​также содержит инструкции по производству кератина 9, но ген не экспрессируется.

Хотя многие источники говорят о зеркальной копии мРНК, они не всегда упоминают, что это зеркальная копия зеркальной копии и, следовательно, точная копия кодирующей цепи ДНК. Это легче понять, если учесть, что ДНК состоит из двух отдельных цепей – кодирующей (смысловой) цепочки, которая проходит в одну сторону, и шаблонной (антисмысловой) цепочки, которая идет антипараллельно ей. Если, например, смысловая цепь проходит слева направо, антисмысловая цепь проходит справа налево. Если смысловая цепь содержит последовательность AAAGCC, антисмысловая цепь будет состоять из нуклеотидов-партнеров, идущих в противоположном направлении: GGCTTT. РНК затем транскрибирует (копирует) код антисмысловой цепи антипараллельно, то есть слева направо – точно так же, как смысловая цепь. Это означает, что код РНК будет AAAGCC – точно такой же, как код антисмысловой цепи ДНК. Существует только одна разность потенциалов – партнером аденина в ДНК является тимин, а в РНК тимин заменяется урацилом.

Как только эти присоединения были сделаны во время процесса транскрипции ДНК, цепь РНК переименовывается в мессенджер РНК или мРНК.

Ученые согласны с тем, что в генетическом коде человека есть три стоп-кодона – также называемые нонсенс-кодонами или терминирующими кодонами. Это TAG, TAA и TGA (ДНК) и UAG, UAA и UGA (РНК). Опять же, TAG, TAA и TGA не действуют как стоп-кодоны во время транскрипции, но копируются (заменяя тимин на урацил) РНК. Стоп-кодоны не кодируют аминокислоту и не относятся к некодирующей группе генов, но являются отдельным объектом. Их распознавание намного проще, чем распознавание стартового кодона. В то время как стартовый кодон также кодирует аминокислоту под названием метионин, аминокислоты стоп-кодона не существуют; их триплетные нуклеотидные последовательности не кодируют часть полипептидной цепи, а действуют только для завершения процессов транскрипции и трансляции.

После того как стартовый кодон мРНК обнаружен, наступает время для переноса РНК доставлять нужные аминокислоты в том же порядке, что и связанные с ними нуклеотидные триплеты. каждый тРНК несет аминокислоту, которая соответствует кодону на мРНК. Трансферная РНК или тРНК «читает» кодоны мРНК, поэтому этот этап синтеза белка называется трансляцией. Именно на этапе трансляции запускаются и останавливаются функции кодонов.

Какие три стоп-кодона?

Три стоп-кодона – это TAG, TAA и TGA в смысле ДНК и UAG, UAA и UGA в мРНК.

TAG и UAG называются янтарными стоп-кодонами; TAA и UAA известны как стоп-кодоны охры, а TGA и UGA – названия опаловых стоп-кодонов (или янтарных стоп-кодонов). Код янтарного цвета приписывается имени ученого, который первым его обнаружил; другие цвета просто продолжают эту цветовую тему. Стоп-кодоны также называют нонсенс-кодонами или терминирующими кодонами, первый из этих терминов, потому что стоп-кодоны никогда не кодируют аминокислоты, а второй – из-за функции стоп-кодонов.

Стоп кодонов мутаций

Мутации стоп-кодонов могут легко возникнуть, особенно если учесть длину генома и тысячи различных нуклеотидных триплетов. Как процессы транскрипции, так и трансляции подвержены широкому кругу потенциальных ошибок, которые могут или не могут привести к анатомическим и физиологическим изменениям. вставка неправильного нуклеотида в ген KRT-9 у членов семьи Было обнаружено, что уже предрасположенные к этому заболеванию способствуют развитию кожного заболевания, известного как эпидермолитическая пальмоплантарная кератодерма.

В то время как все виды мутаций происходят во время транскрипции ДНК в мРНК, мРНК копирует только то, что написано, даже не понимая этого. В течение периода, когда мРНК не контактирует с рибосомой, даже множественные мутации не будут вызывать эффекта. Эффекты видны только тогда, когда измененный код транслируется в дефектный белок. Именно поэтому большинство мутаций помечены как часть процесса трансляции, когда отредактированный код может производить или не производить другую аминокислоту. Тот факт, что большинство аминокислот соответствуют шести различным нуклеотидным триплетам, означает, что существует вероятность того, что даже при наличии мутации будет продуцироваться один и тот же белок. Мы обычно связываем генетические мутации с болезнью; однако они также несут ответственность за успешную эволюцию. Генетические мутации помогают организмам адаптироваться к окружающей среде.

Существуют различные формы генетической мутации. Мутации удаления не копируют определенные части генома и, таким образом, изменяют порядок нуклеотидов. Одна база или несколько баз могут быть полностью пропущены. Мутации вставки добавляют один или несколько нуклеотидов, а также изменяют порядок генетического кода. Заместительные мутации (молчащие, миссенс и нонсенс) заменяют один нуклеотид (не несколько нуклеотидов) другим основанием, и это может заменить или не заменить другую аминокислоту в полипептидной цепи. Если тот же белок продуцируется, даже в присутствии мутации, он называется тихая мутация, В некоторых случаях целый участок ДНК может меняться между двумя нитями – это называется транслокацией.

Если в полипептидную цепь добавлена ​​другая аминокислота, которая может изменить или не изменить ее функцию, причиной является миссенс мутация, Если замещение создает стоп-кодон путем изменения кода нуклеотидного триплета, который соответствует аминокислоте, это называется нонсенс-мутацией. На рисунке ниже показаны три типа мутаций: A – нонсенс-мутация, B – инсерционная мутация, а C и D – делеционные мутации.

Список используемой литературы

Показать спрятать

  • Остин С.П., М.Д. «Открытая рамка для чтения». Национальный исследовательский институт генома человека. Недатированный. Получено с //www.genome.gov/генетика -glossary / Open-Reading-Frame
  • Хатфилд Д. «Трансферная РНК в синтезе белка». Taylor & Francis Group, 13 декабря 2017 г.
  • Разные авторы. «Замена (мутация ДНК) – определение и примеры». Получено с //www.expii.com/t/dna-mutations-substitution-10443

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *