Определение

Аэробное дыхание – это процесс, при котором организмы используют кислород для превращения топлива, такого как жиры и сахара, в химическую энергию. По сравнению, анаэробное дыхание не использует кислород.

Дыхание используется всеми клетками для превращения топлива в энергию, которая может использоваться для питания клеточных процессов. Продукт дыхания является молекула называется аденозинтрифосфатом (АТФ), который использует энергию, запасенную в его фосфатных связях, для запуска химических реакций. Его часто называют «валютой» клетка.

Аэробное дыхание намного эффективнее, и вырабатывает АТФ намного быстрее, чем анаэробное дыхание, Это потому, что кислород является отличным акцептором электронов для химических реакций, участвующих в производстве АТФ.

В процессе гликолиза две молекулы АТФ потребляются и четыре производятся. Это приводит к чистому усилению двух молекул АТФ, продуцируемых для каждой молекулы сахара, расщепленной в результате гликолиза. На этом сходство аэробного и анаэробного дыхания заканчивается.

В клетках с кислородом и аэробным дыханием молекула сахара распадается на две молекулы пируват, В клетках, которые не имеют кислорода, молекула сахара расщепляется на другие формы, такие как лактат.

Различия

После гликолиза различные химические процессы дыхания могут идти несколькими путями:

  • Клетки, использующие аэробное дыхание, продолжают свою цепочку переноса электронов в высокоэффективном процессе, который в результате дает 38 молекул АТФ из каждой молекулы сахара.
  • Клетки, которые лишены кислорода, но обычно не используют анаэробное дыхание, как наши мускул клетки могут оставлять конечные продукты гликолиза сидя, получая только две АТФ на молекулу сахара, которую они расщепляют. Это неэффективный метод получения энергии дыханием.
  • Клетки, которые сделаны для анаэробного дыхания, такие как многие типы бактерии, может продолжить цепочку переноса электронов, чтобы извлечь больше энергии из конечных продуктов гликолиза.

После гликолиза клетки, которые не используют кислород для дыхания, но переходят в цепь переноса электронов, могут использовать другой акцептор электронов, такой как сульфат или нитрат, для продвижения своей реакции.

Эти процессы представляют собой тип анаэробного дыхания, называемого «ферментация «. Некоторые типы реакций брожения производят алкоголь и углекислый газ. Вот как алкогольные напитки и хлеб сделаны.

Аэробное дыхание, с другой стороны, отправляет остатки пирувата после гликолиза по совершенно другому химическому пути, этапы которого подробно обсуждаются ниже.

Шаги Аэробного Дыхания

Общее уравнение

Уравнение для аэробного дыхания описывает реагенты и продукты всех его стадий, включая гликолиз. Это уравнение:

1 глюкоза + 6 O2 → 6 CO2 + 6 H2O + 38 АТФ

Таким образом, 1 молекула шестиуглеродной глюкозы и 6 молекул кислорода превращаются в 6 молекул углекислого газа, 6 молекул воды и 38 молекул АТФ. Реакции аэробного дыхания можно разбить на четыре стадии, описанные ниже.

гликолиз

Гликолиз является первой стадией аэробного дыхания и происходит в цитоплазма клетки. Он включает в себя расщепление 1 молекулы сахара с шестью углеродами на две молекулы пирувата с тремя углеродами. Этот процесс создает две молекулы АТФ.

Общее уравнение выглядит следующим образом:

C6H12O6 + 2 ADP + 2 PI + 2 NAD + → 2 Пируват + 2 ATP + 2 NADH + 2 H + + 2 H2O

Этот процесс уменьшает кофактор NAD + до NADH. Это важно, так как позже в процессе клеточное дыхание, NADH будет способствовать формированию гораздо большего количества АТФ через митохондрии «s цепь переноса электронов.

На следующей стадии пируват перерабатывают для превращения его в топливо для цикла лимонной кислоты, используя процесс окислительного декарбоксилирования.

Окислительное декарбоксилирование пирувата

2 (Пируват– + Коэнзим A + NAD + → Ацетил-КоА + CO2 + NADH)

Окислительное декарбоксилирование, иногда называемое реакцией связи или реакцией перехода, является связующим звеном между гликолизом и циклом лимонной кислоты. Это, как и гликолиз, происходит в цитоплазме. В этом процессе пируват объединяется с коферментом А для получения ацетил-КоА.

Эта реакция перехода важна, потому что ацетил-КоА является идеальным топливом для цикла лимонной кислоты, который, в свою очередь, может привести в действие процесс окислительного фосфорилирования в митохондриях, которые производят огромное количество АТФ.

Больше NADH также создано в этой реакции. Это означает больше топлива для создания большего количества АТФ позже в процессе клеточного дыхания.

Цикл лимонной кислоты

2 (ACETYL COA + 3 NAD + + FAD + ADP + PI → CO2 + 3 NADH + FADH2 + ATP + H + + COENZYME A)

Реакция происходит дважды для каждой молекулы глюкозы, поскольку существует два пирувата и, следовательно, две молекулы ацетил-КоА, генерируемые для входа в цикл лимонной кислоты.

И NADH, и FADH2 – еще один переносчик электронов для цепи переноса электронов – созданы. Все NADH и FADH2, созданные на предыдущих этапах, теперь вступают в игру в процессе окислительного фосфорилирования.

Таким образом, в каждом цикле цикла два атома углерода вступают в реакцию в форме ацетил-КоА. Они производят две молекулы углекислого газа. Реакции генерируют три молекулы NADH и одну молекулу FADH. Одна молекула АТФ производится.

Окислительного фосфорилирования

Окислительное фосфорилирование является основной энергией, обеспечивающей стадию аэробного дыхания. Он использует свернутые мембраны в митохондриях клетки для производства огромного количества АТФ.

34 (ADP + PI + NADH + 1/2 O2 + 2H + → ATP + NAD + + 2 H2O)

В этом процессе NADH и FADH2 отдают электроны, полученные ими из глюкозы на предыдущих этапах клеточного дыхания, в цепь транспорта электронов в мембране митохондрий.

Цепочка переноса электронов состоит из ряда белковые комплексы которые встроены в митохондриальную мембрану, включая комплекс I, Q, комплекс III, цитохром С и комплекс IV.

Все это в конечном итоге служит для передачи электронов с более высоких на более низкие энергетические уровни, собирая энергию, выделяемую в процессе. Эта энергия используется для питания протонных насосов, которые приводят к образованию АТФ.

Так же, как натриево-калиевый насос клеточная мембрана протонные насосы митохондриальной мембраны используются для генерации градиент концентрации которые могут быть использованы для питания других процессов.

Протоны, которые транспортируются через мембрану, используя энергию, собранную от NADH и FADH2, «хотят» проходить через канальные белки из их области высокой концентрации в их область низкой концентрации.

В частности, белки канала представляют собой синтез АТФ, которые являются ферментами, которые производят АТФ. Когда протоны проходят через АТФ-синтаза они управляют образованием АТФ.

Именно поэтому этот процесс называют митохондриями «электростанциями клетки». Цепочка переноса электронов в митохондриях составляет почти 90% всех АТФ, образующихся в клетке, в результате расщепления пищи.

Это также шаг, который требует кислорода. Без молекул кислорода, чтобы принять истощенные электроны в конце цепи переноса электронов, электроны отступили бы, и процесс создания АТФ не мог бы продолжаться.

Аэробное дыхание – вот почему нам нужны и пища, и кислород, поскольку оба они необходимы для выработки АТФ, который позволяет нашим клеткам функционировать. Мы вдыхаем O2 и выдыхаем одинаковое количество молекул CO2. Откуда появился атом углерода? Это происходит от пищи, такой как сахар и жир, которую вы съели.

Именно поэтому вы дышите тяжелее и быстрее, выполняя сжигание калорий. Ваше тело использует кислород и сахар с большей скоростью, чем обычно, и вырабатывает больше АТФ для питания ваших клеток, а также больше отходов CO2.

Хотя наши клетки обычно используют кислород для дыхания, когда мы используем АТФ быстрее, чем доставляем молекулы кислорода в наши клетки, наши клетки могут выполнять анаэробное дыхание, чтобы удовлетворить свои потребности в течение нескольких минут.

Интересный факт: накопление лактата в результате анаэробного дыхания является одной из причин, почему мышцы могут чувствовать боль после интенсивные упражнения!

викторина

Список используемой литературы

Показать спрятать

  • Berg J.M., Tymoczko J.L., Stryer L. биохимия, 5-е издание. Нью-Йорк: Ш Фриман; 2002. Раздел 18.6, Регуляция клеточного дыхания определяется прежде всего необходимостью АТФ. Доступно по адресу: https://www.ncbi.nlm.nih.gov/books/NBK22448/
  • Альбертс Б., Джонсон А., Льюис Дж. И др. Молекулярная биология клетки. 4-е издание. Нью-Йорк: Гарленд Наука; 2002. Ссылки. Доступно по адресу: https://www.ncbi.nlm.nih.gov/books/NBK26903/
  • Данн, Дж. & Гридер, М. Х. физиология, Аденозинтрифосфат (АТФ) [Updated 2020 Jan 15], В: StatPearls [Internet], Остров Сокровищ (Флорида): StatPearls Publishing; 2020 янв. Доступно по адресу: https://www.ncbi.nlm.nih.gov/books/NBK553175/
  • Lodish, H., Berk, A., Zipursky, S.L., et al. Молекулярно-клеточная биология. 4-е издание. Нью-Йорк: У. Х. Фриман; 2000. Доступно по адресу: https://www.ncbi.nlm.nih.gov/books/NBK21475/

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *